PBI Technologies

Publications

Publications Relating to Papivax Vaccine Technology

Heat Shock Protein 70 (HSP70) DNA Vaccine Technology

C.-H. Chen, T.-L. Wang, C.-F. Hung, Y. Yang, H. Chen, R. A. Young, D. M. Pardoll and T.-C. Wu. (2000) Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene.  Cancer Research, 60(4):1035-1042. https://pubmed.ncbi.nlm.nih.gov/10706121/

Trimble, C.-T. Lin , C.-F. Hung, S. Pai, J. Juang, L. He, M. Gillison, D. Pardoll, L. Wu, and T. -C. Wu. (2003) Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine. 21(25-26): 4036-4042. https://pubmed.ncbi.nlm.nih.gov/12922140/

J.W. Kim, C.-F. Hung, J. Juang, L. He, T.W. Kim, D.K. Armstrong, S.I. Pai, C.-T. Lin, D.A. Boyd, and T. -C. Wu. (2004)  Comparison of HPV DNA Vaccines Employing Intracellular Targeting Strategies. Gene Ther. 11(12): 1011-1018. https://pubmed.ncbi.nlm.nih.gov/14985791/

C.L. Trimble, S. Peng, F. Kos, P. Gravitt, R. Viscidi, E. Sugar, D. Pardoll, and  T.-C. Wu. (2009) A phase I trial of a HPV DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3 Clin Cancer Res. 15(1):361-367. https://pubmed.ncbi.nlm.nih.gov/19118066/

Calreticulin (CRT) DNA Vaccine Technology

W.-F. Cheng, C.-F. Hung, C.-Y. Chai, K.-F. Hsu, L. He, M. Ling and T.-C. Wu. (2001) Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J. Clin. Invest. 108(5): 669-78. https://pubmed.ncbi.nlm.nih.gov/11544272/

Peng, H. Ji, C. Trimble, L. He, Y.-C. Tsai, J. Yeatermeyer, D.A. Boyd, C.-F. Hung, and T.-C. Wu. (2004) Development of a DNA Vaccine Targeting HPV-16 Oncoprotein E6. J. Virol. 78(16): 8468-8476. https://pubmed.ncbi.nlm.nih.gov/15280455/

W.-F. Cheng, C.-F. Hung, C.-A. Chen, C.-N. Lee, Y.-N. Su, C.-Y. Chai, D.A. Boyd, C.-Y. Hsieh, and T.-C. Wu. (2005) Characterization of DNA vaccines encoding the domains of calreticulin for their ability to elicit tumor-specific immunity and antiangiogenesis. Vaccine. 23(29): 3864-3874. https://pubmed.ncbi.nlm.nih.gov/15893626/

Peng, T.T. Tomson, C. Trimble, L. He, C.-F. Hung, and T.-C. Wu. (2006) A Combination of DNA Vaccines Targeting Human Papillomavirus Type 16 E6 and E7 Generates Potent Antitumor Effects. Gene Ther. 13(3): 257-265. https://pubmed.ncbi.nlm.nih.gov/16177818/

Kim, R. Gambhira, B. Karanam, A. Monie, C.-F. Hung, R. Roden, and T.-C. Wu. (2008) Generation and characterization of a preventive and therapeutic HPV DNA vaccine. Vaccine 26(3): 351-360. https://pubmed.ncbi.nlm.nih.gov/18096279/

C.W. Tseng, C. Trimble, Q. Zeng, A. Monie, R.D. Alvarez, W.K. Huh, T. Hoory, M.C. Wang, C.-F. Hung, and T.-C. Wu. (2009) Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts. Cancer Immunol Immunother. 58(5):737-748. https://pubmed.ncbi.nlm.nih.gov/18815785/

Peng, S. Lyford-Pike, B. Akpeng, A. Wu, C.-F. Hung, D. Hannaman, J. R. Saunders, T.-C. Wu, Sara I. Pai (2013) Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine. Cancer Immunology and Immunotherapy 62(1):171-82. https://pubmed.ncbi.nlm.nih.gov/23011589/

SJ Lee, L Song, MC Yang, CP Mao, B Yang, A Yang, J Jeang, S Peng, T-C Wu, CF Hung (2015) Local administration of granulocyte macrophage colony-stimulating factor induces local accumulation of dendritic cells and antigen-specific CD8+ T cells and enhances dendritic cell cross-presentation. Vaccine 33 (13), 1549-1555. https://pubmed.ncbi.nlm.nih.gov/25701675/

Y Sun, S Peng, J Qiu, J Miao, B Yang, J Jeang, C-F Hung, T-C Wu (2015) Intravaginal HPV DNA vaccination with electroporation induces local CD8+ T-cell immune responses and antitumor effects against cervicovaginal tumors. Gene Therapy 22(7), 528-535. https://pubmed.ncbi.nlm.nih.gov/25786869/

RD Alvarez, WK Huh, S Bae, LS Jr Lamb, MG Conner, J Boyer, C Wang, CF Hung, E Sauter, M Paradis, EA Adams, S Hester, BE Jackson, TC Wu, CL Trimble (2016) A pilot study of pNGVL4a-CRT/E7(detox) for the treatment of patients with HPV16+ cervical intraepithelial neoplasia 2/3 (CIN2/3). Gynecologic Oncology 140(2): 245-252. https://pubmed.ncbi.nlm.nih.gov/26616223/

Sun Y, Peng S, Yang A, Farmer E, TC Wu*, Hung CF (2017) Coinjection of IL2 DNA enhances E7-specific antitumor immunity elicited by intravaginal therapeutic HPV DNA vaccination with electroporation. Gene Ther. 2017 May 11. doi: 10.1038/gt.2017.38. (co-corresponding author). https://pubmed.ncbi.nlm.nih.gov/28492521/

TA-CIN Vaccine Technology

de Jong A, O’Niell T, Khan AY, Kwappenberg KM, Chisolm SE, Whittle NR, Dobson JA, Jack LC, St Clair Roberts JA, Offringa R et al (2002). Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16L2E7E6 fusion protein vaccine. Vaccine 20, 3456-3464. https://pubmed.ncbi.nlm.nih.gov/12297390/

Davidson EJ, Faulkner RL, Sehr P, Pawlita M, Smyth LJ, Burt DJ, Tomlinson AE, Hickling J, Kitchener HC, and Stern PL. (2004). Effect of TA-CIN (HPV 16 L2E6E7) booster immunisation in vulval intraepithelial neoplasia patients previously vaccinated with TA-HPV (vaccinia virus encoding HPV 16/18 E6E7). Vaccine 22, 2722-2729. https://pubmed.ncbi.nlm.nih.gov/15246603/

Gambhira R, Gravitt P.E, Bossis I, Stern PL, Viscidi RP, and Roden, RB. (2006). Vaccination of healthy volunteers with human papillomavirus type 16 L2E7E6 fusion protein induces serum antibody that neutralizes across papillomavirus species. Cancer research 66, 11120-11124. https://pubmed.ncbi.nlm.nih.gov/17145854/

Fiander AN, Tristram A.J, Davidson EJ, Tomlinson AE, Man S, Baldwin PJ, Sterling JC, and Kitchener HC. (2006). Prime-boost vaccination strategy in women with high-grade, noncervical anogenital intraepithelial neoplasia: clinical results from a multicenter phase II trial. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society 16, 1075-1081. https://pubmed.ncbi.nlm.nih.gov/16803488/

Daayana S, Elkord E, Winters U, Pawlita M, Roden R, Stern PL, and Kitchener HC. (2010). Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br J Cancer 102, 1129-1136. https://pubmed.ncbi.nlm.nih.gov/20234368/

S Peng, JW Wang, B Karanam, C Wang, WK Huh, RD Alvarez, SI Pai, CF Hung, T.-C. Wu and RBS Roden (2015) Sequential Cisplatin Therapy and Vaccination with HPV16 E6E7L2 Fusion Protein in Saponin Adjuvant GPI-0100 for the Treatment of a Model HPV16+ Cancer. PloS one 10 (1), e116389. https://pubmed.ncbi.nlm.nih.gov/25560237/

Peng S, Tan M, Li Y, Cheng MA, Farmer E, Ferrall L, Gaillard S, Roden RBS, Hung CF, Wu TC. PD-1 Blockade Synergizes with Intratumoral Vaccination of a Therapeutic HPV Protein Vaccine and Elicits Regression of Tumor in a Preclinical Model. Cancer Immunol Immunother. 2020 Oct 27. PMID: 33108473. https://pubmed.ncbi.nlm.nih.gov/33108473/

TA-HPV Vaccine Technology

Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, Evans AS, Adams M, Stacey SN, Boursnell ME, Rutherford E, Hickling JK, Inglis SC. (1996). A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet. 1996;347(9014):1523-7. Epub 1996/06/01. PubMed PMID: 8684105. https://pubmed.ncbi.nlm.nih.gov/8684105/

Adams M, Borysiewicz L, Fiander A, Man S, Jasani B, Navabi H, Lipetz C, Evans AS, Mason M. Clinical studies of human papilloma vaccines in pre-invasive and invasive cancer. Vaccine. 2001;19(17-19):2549-56. PubMed PMID: 11257391. https://pubmed.ncbi.nlm.nih.gov/11257391/

Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A, Adams M, Onon TS, Bauknecht T, Wagner U, Kroon K, Hickling J, Boswell CM, Stacey SN, Kitchener HC, Gillard J, Wanders J, Roberts JS, Zwierzina H. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res. 2002;8(12):3676-85. PubMed PMID: 12473576. https://pubmed.ncbi.nlm.nih.gov/12473576/

Baldwin PJ, van der Burg SH, Boswell CM, Offringa R, Hickling JK, Dobson J, Roberts JS, Latimer JA, Moseley RP, Coleman N, Stanley MA, Sterling JC. (2003). Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin Cancer Res. 1;9(14):5205-13. PMID: 14614000. https://pubmed.ncbi.nlm.nih.gov/14614000/

Davidson EJ, Boswell CM, Sehr P, Pawlita M, Tomlinson AE, McVey RJ, Dobson J, Roberts JS, Hickling J, Kitchener HC, Stern PL. Immunological and clinical responses in women with vulval intraepithelial neoplasia vaccinated with a vaccinia virus encoding human papillomavirus 16/18 oncoproteins. Cancer Res. 2003;63(18):6032-41. PubMed PMID: 14522932. https://pubmed.ncbi.nlm.nih.gov/14522932/

Fiander AN, Tristram AJ, Davidson EJ, Tomlinson AE, Man S, Baldwin PJ, Sterling JC, Kitchener HC. Prime-boost vaccination strategy in women with high-grade, noncervical anogenital intraepithelial neoplasia: clinical results from a multicenter phase II trial. Int J Gynecol Cancer. 2006;16(3):1075-81. doi: 10.1111/j.1525-1438.2006.00598.x. PubMed PMID: 16803488. https://pubmed.ncbi.nlm.nih.gov/16803488/

HSP70 DNA Vaccine Prime-TA-CIN Protein Boost

Peng S, Qiu J, Yang A, Yang B, Jeang J, Wang JW, Chang YN, Brayton C, Roden RB, Hung CF and T.-C. Wu (2016) Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease. Cell Biosci.  25(6):16. https://pubmed.ncbi.nlm.nih.gov/26918115/

HSP70 DNA Vaccine Prime- TA-HPV Vaccinia Boost

C.-H. Chen, T.-L. Wang, C.-F. Hung, D. M. Pardoll and T.-C. Wu. (2000) Boosting with recombinant vaccinia increases HPV-16 E7-specific T cell precursor frequencies of HPV-16 E7-expressing DNA vaccines. Vaccine, 18(19): 2015-2022. https://pubmed.ncbi.nlm.nih.gov/10706963/

Maldonado L, Teague JE, Morrow MP, Jotova I, T.-C. Wu, Wang C, Desmarais C, Boyer JD, Tycko B, Robins HS, Clark RA, Trimble CL.(2014) Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Sci Transl Med. 6(221):221ra13. https://pubmed.ncbi.nlm.nih.gov/24477000/

YY Sun, S Peng, L Han, J Qiu, L Song, YC Tsai, B Yang, RB Roden, CL Trimble, CF Hung, TC Wu (2016) Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T Cell Mediated Tumor Control in the Genital Tract. Clin. Cancer Res. 22(3): 675-69. https://pubmed.ncbi.nlm.nih.gov/26420854/

Qiu J, Peng S, Ma Y, Yang A, Farmer E, Cheng MA, Roden RBS, Wu TC, Chang YN, Hung CF. Epithelial boost enhances antigen expression by vaccinia virus for the generation of potent CD8+ T cell-mediated antitumor immunity following DNA priming vaccination. Virology. 2018;525:205-15. Epub 2018/10/09. doi: 10.1016/j.virol.2018.09.019. PubMed PMID: 30296681. https://pubmed.ncbi.nlm.nih.gov/30296681/

Peng S, Ferrall L, Gaillard S, Wang CG, Chi WY, Huang CH, Roden RBS, Wu TC, Chang YN, Hung CF. Development of DNA vaccine targeting E6 and E7 proteins of Human Papillomavirus 16 (HPV16) and HPV18 for immunotherapy in combination with recombinant vaccinia boost and PD-1 antibody (2021). mBio, 12(1):e03224-20. https://pubmed.ncbi.nlm.nih.gov/33468698/

Top